Applied Geostatistics (응용지구통계학) (G17604)

- 2020 Final Examination -

Student ID:

Name:

Notice

• Fill your name below:

"I, _____, swear I solve all problems by myself in this midterm examination. I will take any disadvantages if any dishonesty such as cheating is acted on my solution." 5 points will be deducted from your total score if you do not fill in your name above.

- Submit your solution as *.pdf or *.word file on the cyber campus.
- Please follow the format that gives a name to your report or report file: (Final)-(Student ID)-(Last name)-(First name)
 For example, the file name must be Final-XXXXXX-Min-Baehyun.
- Due date: June 22, 2020, 21:30:00 PM GMT+9.
- No late submission is accepted.

Problem 1. [5 pts.]

Explain the following schemes briefly:

- (1) Weak second order stationarity [2 pts.]
- (2) Intrinsic hypothesis [3 pts.]

Problem 2. [10 pts.]

Draw five theoretical variogram models (i.e., nugget, linear, spherical, exponential, and Gaussian models) as a function of distance *h* with a range *a* and sill σ^2 in a graph. Compare the characteristics of the variogram models, in brief. [10 pts.]

Problem 3. [20 pts.]

In the Cartesian coordinate system, calculate semi-variogram at (x, y) = (3, 4). Distance *h* must be calculated from the origin (x, y) = (0, 0).

3-1. Isotropic model [5 pts.].

 $\gamma(h) = 3 + 4 \operatorname{Exp}_{10}(h)$

3-2. Anisotropic geometric model with a major direction N45E [5 pts.].

 $\gamma_{\rm x}(h) = 3 + 4 \operatorname{Exp}_{10}(h)$ $\gamma_{\rm v}(h) = 3 + 4 \operatorname{Exp}_{5}(h)$

3-3. Anisotropic model [5 pts.].

 $\gamma_{x}(h) = 2 + 3Gauss_{10}(h) + 4Sph_{15}(h)$

$$\gamma_{y}(h) = 2 + 3Gauss_{5}(h) + 4Sph_{10}(h)$$

3-4. Anisotropic zonal model [5 pts.].

$$\gamma_{\rm x}(h) = 2 + 3{\rm Sph}_{10}(h) + 4{\rm Exp}_{15}(h)$$

$$\gamma_{y}(h) = 2 + 4\operatorname{Sph}_{5}(h) + 5\operatorname{Exp}_{10}(h)$$

Problem 4. [30 pts.]

Let's assume you have *n* sample data points.

- 4-1. Derive the Kriging equation and the error variance for ordinary kriging [10 pts.].
- 4-2. Derive the Kriging equation and the error variance for block kriging [10 pts.].
- 4-3. Derive the Kriging equation and the error variance for co-kriging [10 pts.].

Problem 5. [15 pts.]

Estimate kriged values and its error variance values at z_4 , z_5 , and z_6 using ordinary kriging under the following conditions:

- Variogram model is linear with the range of 200 and sill of 4 (i.e., $\gamma(h) = 4$ Linear₂₀₀(h)).
- Three sample values are as follows: $z_1 = 5$, $z_2=10$, and $z_3=15$.
- Round any number off to the third decimal place for your calculation.

Problem 6. [20 pts.]

X and Y are coordinates and Z is the content of gold in rock sample. That is, Z indicates gold karat. Four samples are collected from Z_1 to Z_4 .

150							
	0		Z ₂	Data No.	X	Y	Z, g/ton
	Z ₁		(105, 105)	1	15	130	8
100	(13, 130)			2	105	105	9
	z ₅ ⑦	z ₆ ⑦		3	135	45	12
50	(25, 75)	(75, 75)		4	45	15	10
	7		Z ₃ O (135, 45)	5	25	75	?
0	(45, 15)			6	75	75	?
⁰ 0 50 100 150							

6-1. Estimate gold karat at the gridblock including Z_5 using block kriging with four quasipoint measurements.

6-2. Estimate gold karat at the gridblock including Z_6 using block kriging with four quasipoint measurements.

----- This is the End of the Final Examination ------