Carbon Capture, Utilization, and Storage (이산화탄소 포집, 활용 및 저장) (38535)

- 2023 Midterm Examination -

Student ID:

Name:

Notice

• Fill your name below:

"I, ______, swear I solve all problems by myself in this midterm examination. I will take any disadvantages if any dishonesty such as cheating is acted on my solution." 5 points will be deducted from your total score if you do not fill in your name above.

- You MUST solve each problem by hand.
- Submission Deadline: 12:30~13:45 PM, April 17, 2023

Problem 1.

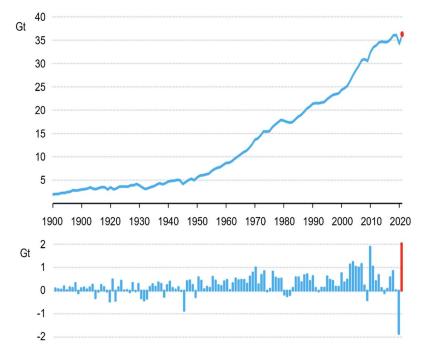
Provide the full name of each acronym in English:

- 1-1. IPCC [2 pts.]
- 1-2. IEA [2 pts.]
- 1-3. GWP [2 pts.]
- 1-4. GHG [2 pts.]
- 1-5. SCAL [2 pts.]

Problem 2.

Sort the following 10 countries in descending order from the 1st rank to the 10th rank based on CO₂ emissions in 2021 (Source: BP Statistical Review of World Energy 2022). [10 pts.]

Rank	Country		Tonnes o	Growth rate per annum		Share			
		2010		2019	2020	2021	2021	2011-21	2021
1		8,146		9,810	9,899	10,523	5.8%	1.8%	31.1%
2		5,495		5,029	4,457	4,701	6.6%	-1.3%	13.9%
3		1,652		2,472	2,302	2,553	12.2%	4.0%	7.5%
4		1,527		1,596	1,482	1,581	8.9%	0.1%	4.7%
5		1,198		1,118	1,027	1,054	2.6%	-1.4%	3.1%
6		537		675	678	661	2.6%	2.5%	1.9%
7		783		681	605	623	5.0%	-1.9%	1.9%
8		579		623	578	604	2.8%	-0.2%	1.8%
9		472		580	571	575	1.4%	1.4%	1.7%
10		446		625	545	573	2.4%	2.0%	1.7%
	Total World	31,291	- 110 I	34,357	32,284	33,884	5.9%	0.6%	100.0%


China, Germany, Japan, India, Indonesia, Iran, Russia, Saudi Arabia, South Korea, USA

Problem 3.

Answer to each question shortly.

- 3-1. What is the name of the first large-scale offshore CCS project in the world? [2 pts.]
- 3-2. What is the name of the only large-scale CCS project utilizing InSAR data in the world? [2 pts.]
- 3-3. Address the reason why the relationship between the buoyancy force and capillary pressure is important for safe geological carbon storage. [2 pts.]
- 3-4. What is the main difference between enhanced geothermal system (인공지열발전) and geological carbon storage in terms of pressure maintenance? [2 pts.]
- 3-5. According to IEA 2022, global energy-related CO₂ emissions were set to fall nearly 8% in 2020 to their lowest level in a decade. However, the CO₂ emissions rebounded in 2021 to reach their highest every annual level (i.e., 6% increase from 2020 pushed emissions to 36.3 Gt).

The question is, what is the main reason of the decrease of CO_2 emissions in 2020 and rebound of CO_2 emissions in 2021? [2 pts.]

[Figure. CO₂ emissions grew to 36.3 Gt in 2021, a record high (IEA, 2022)]

Problem 4.

- 4-1. Draw a phase diagram of pure CO₂ with its critical pressure and temperature. [4 pts.]
- 4-2. Explain dense phase fluid. [3 pts.]
- 4-3. Explain supercritical fluid. [3 pts.]

Problem 5.

Below table shows greenhouse gas emissions from "A" company in 2020.

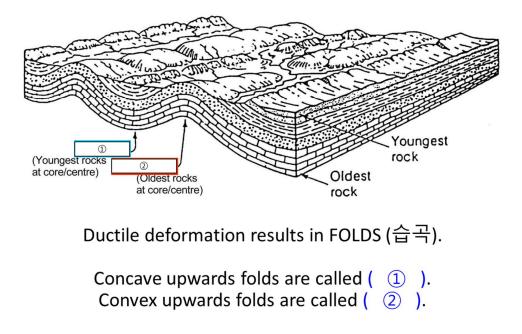
CO ₂	CH ₄	N₂O	HFCs	PFCs	SF ₆	GWP	GWP	GWP	GWP	GWP	GWP
(ton)	(kg)	(kg)	(kg)	(kg)	(kg)	(CO2)	(CH4)	(N2O)	(HFCs)	(PFCs)	(SF6)
100,000	380	35			•	1	21	310	-	-	23,900

5-1. How much is the CO₂ emissions of this company? [3 pts.]

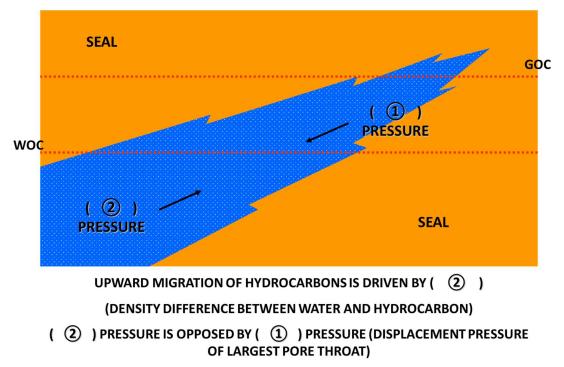
5-2. How much is the CO₂-eq emissions of this company? Round off your answer to the nearest hundredth (당신의 답을 소수점 둘째자리에서 반올림하시오). [3 pts.]

5-3. How much is the carbon (C) emissions of this company? Round off your answer to the nearest hundredth. [4 pts.]

Problem 6.


List six conventional options for storing CO_2 in deep underground geological formations for CO_2 . [12 pts.]

Problem 7.

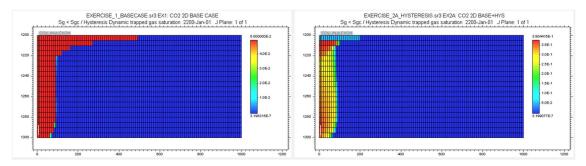

Draw a graph to compare four primary CO_2 trapping mechanisms in terms of time since cessation of injection (years) along the horizontal axis and trapping contribution (%) along the vertical axis [12 pts.].

Problem 8.

8-1. Fill the two blanks ① and ② [4 pts.].

8-2. Fill the two blanks (1) and (2) [4 pts.].

Problem 9.


This figure was captured from the Lecture Note RE2.2 Scenarios of Prediction: Gas Injection.

- 9-1. Describe the operating constraints of this gas injection well 'wl12_inj'. [4 pts.]
- 9-2. What would happen if any operating constraint is violated? [4 pts.]

ID & Type	🗹 Con	straint definitior	previous date: <none></none>					
Constraints Multipliers	#	Constraint	Parameter	Limit/Mode	Value	Action		Frequency
	* 1	OPERATE	BHP bottom hole pressure	MAX	20000 kPa	CONT REPEAT		
	2	OPERATE	STG surface gas rate	MAX	400000 m3/d	CONT REPEAT		
Wellbore		select new 💌						

Problem 10.

Below figures compare simulation results of structural trapping (left) and hysteresis trapping (right) where CO_2 has been injected for 1 year and migrated for the subsequent 200 years. Analyze the simulation results based on your engineering knowledge [10 pts].

----- This is the End of the Midterm Examination ------