Spatial Information Modeling for Climate and Energy Systems (기후에너지 공간정보모델링) (38541)

- 2022 Final Examination -

Student ID:

Name:

Notice

• Fill your name below and write the whole sentence in your answer sheet:

"I, _____, swear I solve all problems by myself in this midterm examination. I will take any disadvantages if any dishonesty such as cheating is acted on my solution."

5 points will be deducted from your total score if you do not fill in your name above.

- You MUST solve each problem by hand.
- Submission Deadline: 11:00 AM ~ 12:15 PM, June 9, 2022.
- Submission Deadline: 12:15 PM ~ 12:30 PM, June 9, 2022.
- No late submission is accepted.
- Round off all your answer to the nearest hundredth.
 (당신의 모든 답을 소수점 둘째자리에서 반올림하시오).
- Submit your solution as *.pdf or *.word file on the cyber campus.
- Please follow the format that gives a name to your solution file: (Final)-(Student ID)-(Last name)-(First name)
 For example, the file name must be Final-XXXXXX-Min-Baehyun.

Problem 1. [10 pts.]

Explain the following schemes, in brief:

- 1-1. Weak second order stationarity
- 1-2. Intrinsic hypothesis

Problem 2. [20 pts.]

Draw five theoretical variogram models (i.e., nugget, linear, spherical, exponential, and Gaussian models) as a function of distance h with a range a and sill σ^2 in a single graph. Compare characteristics of these variogram models, in detail.

Problem 3. [5 pts.]

In the Cartesian coordinate system, calculate the semi-variogram at (x, y) = (3, 4) when the isotropic semi-variogram model is given as $\gamma(h) = 3 + 4 \text{Exp}_{10}(h)$. Distance *h* must be calculated from the origin (x, y) = (0, 0).

Problem 4. [20 pts.]

Let us estimate a spatial random variable z at any location using n sample data points. The estimate can be denoted as z^* .

4-1. Show your work to derive the Kriging equation and error variance for simple kriging [10 pts.].

4-2. Show your work to derive the Kriging equation and error variance for ordinary kriging [10 pts.].

Problem 5. [20 pts.]

Estimate kriged values and its error variance values at z_4 , z_5 , and z_6 using ordinary kriging under the following conditions:

- Variogram model is linear with the range of 200 and sill of 4 (i.e., $\gamma(h) = 4$ Linear₂₀₀(h)).
- Three sample values are as follows: $z_1 = 5$, $z_2 = 10$, and $z_3 = 15$.

(a) Distribution of sample data z_1 , z_2 , and z_3

(b) Variogram model (linear)

Problem 6. [25 pts.]

In the two-dimensional domain, X and Y are coordinates and Z is the content of gold in rock sample. The unit of Z is gold karat (g/ton). Four rock samples are collected from Z_1 , Z_3 , Z_7 , and Z_9 . Make a rational assumption, if needed.

6-1. Show your work to draw a map of Z estimates using ordinary kriging, in detail. In other words, show your work how to estimate Z values from Z_1 to Z_9 , in detail.

6-2. Show your work to draw a map of error variance σ_{OK}^2 using ordinary kriging, in detail. In other words, show your work how to estimate error variance associated with Z values from Z₁ to Z₉.

----- This is the End of the Final Examination ------